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Abstract

In this paper, we consider the problem 
of super-resolving a human face video by 
a very high (x16) zoom factor. Inspired 
by recent literature on hallucination and 
example based learning, we formulate 
this task using a graphical model that 
encodes 1)spatio-temporal consistencies, 
and 2)image formation & degradation 
processes. A video database of facial 
expressions is used to learn a domain 
specific prior for high-resolution videos. 
The problem is posed as one of probabilistic 
inference, in which we aim to find the 
high resolution video that best satisfies 
the constraints expressed through the 
graphical model. Traditional approaches to 
this problem using video data first estimate 
the relative motion between frames 
and then compensate for it, effectively 
resulting in multiple measurements of the 
scene. Our use of time is rather direct: We 
define data structures that span multiple 
consecutive frames, enriching our feature 
vectors with a temporal signature. We then 
exploit these signatures to find consistent 
solutions over time. In our experiments, 
a 8x6 pixel-wide face video, subject to 
translational jitter and additive noise, gets 
magnified to a 128x96 pixel video. Our 
results show that by exploiting both space 
and time, drastic improvements can be 
achieved in both video flicker artifacts and 
mean-squared-error.
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High-Zoom Video Hallucination by exploiting Spatio-Temporal Regularities

This scientific article exploits the possibilities of a new image processing area called 
Super Resolution. Prepared by Goksel Dedeoglu, Takeo Kanade and Jonas August 
from The Robotics Institute, Carnegie Mellon University, in Pittsburgh, the so-called 
"hallucination" concept might be very interesting for CCTV in general, forensic imaging 
and investigation of low quality video images as it achieves almost unbelievable 
reconstructing (hallucinated) factors. Movie clips showing the results from this can be 
downloaded from http://www.ri.cmu.edu/pubs/pub_4639.html.
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Learning-based Super-Resolution
Imagine we are given an extremely low resolution 

video (Fig. 1, top). Assuming that there is a human face 
in these images, can we guess the missing details, 
and estimate (or “hallucinate”) a highly zoomed, super-
resolved video that resembles the original (bottom)? In 
this paper, we present a model for this task, formulate 
it as an inference problem, and describe an algorithm 
for solving it.

The problem of estimating high resolution image 
details is commonly referred to as Super-Resolution 
(SR), although in practice approaches may differ in 
their use of a single static image, a sequence of 
thereof, or a video of a dynamic scene. Mathematically, 
such problems are highly ill-posed, motivating the 
use of Bayesian techniques and generic smoothness 
assumptions about high resolution images (Fig. 1, 
middle).

Recently, learning-based approaches to SR have 
produced compelling results. The essence of these 
techniques is to use a training set of high resolution 
images and their low resolution counterparts to build 
a co-occurence model (stored either directly as image 
patches, or as coefficients of alternative representations). 
At the time of applying the learnt model, the task is to 
predict high resolution data from the observed low 
resolution data. In the work by W. T. Freeman, E. C. 
Pasztor, and O. T. Carmichael: Learning low-level 
vision, in the International Journal of Computer Vision, 
an example-based learning scheme was applied to 
generic images and zooming results up to a factor of 4 
were reported.

A direct application of this to video sequences was 
attempted in the work by C. M. Bishop, A. Blake, and 
B. Marthi: Super-resolution enhancement of video, in 
the magazine of the Society for Artificial Intelligence 
and Statistics, but severe video artifacts were found. 

As a remedy, an ad-hoc solution was proposed, which 
consisted of re-using high-resolution solutions for 
achieving more coherent videos.

An interesting aspect of learning approaches is that 
they can be made much more powerful when images 
are limited to a particular domain. For instance, the work 
by S. Baker and T. Kanade: Limits on super-resolution 
and how to break them, in the IEEE Transactions on 
Pattern Analysis and Machine Intelligence; considered 
super-resolving human faces only. Their recognition 
algorithm referred to a database of registered face 
images, and collected best matching image patches 
given the input, enabling convincing results with zoom 
factors up to 8.

The model we propose for super-resolving videos is 
inspired by the following key aspects of earlier work: 
By limiting our learning task to faces only, and using 
a spatially varying prior, we keep the computational 
requirements relatively low. Inspired by the use of 
spatial couplings, we model both spatial and temporal 
consistencies in the super-resolved videos. In contrast 
to some of the previously mentioned works, we do not 
resort to re-seeding our high resolution hypothesis 
space with earlier solutions, but instead model and deal 
with temporal visual phenomena directly.

Modeling the High-Zoom Problem
In this section, we present a model for the high-

zoom problem, through which we integrate our domain 
knowledge about the videos of interest with the physical 
principles of image formation.

Generative Image Model

A graphical model is a concise tool for expressing 
causal and statistical dependence relationships between 
random variables of interest. We now introduce our 
graphical model for the formation of low-resolution 
observations. For clarity, we describe this generative 
model for the static image case, then extend it to the 
temporal dimension for videos in subsection 2.2.

Our model for low-resolution observations comprises 
three steps: organized upwards in Fig. 2, 1) Generation 
of template image T, 2) addition of illumination offset 
I to generate a noisy high-resolution image H, and 
3) downsampling and corruption for forming the low-
resolution image L. 

We now discuss each of these steps in detail.
The starting point is a high-resolution template image 

T, generated following a prior model about possible 
images in the domain. Building a generative statistical 
model of T that can account for all possible face 
images represents a formidable challenge. In order to 
circumvent this modeling problem, we will take a non-
parametric approach, and draw samples from a large 
database of examples. Since capturing all possible 
variations of facial expressions and features requires a 
very large number of examples to be stored, one can 
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Figure 1: Given only a low-resolution video (top), 
how can one estimate (or “hallucinate”) the original 
high-resolution video (bottom)? Unfortunately, simple 
methods such as bicubic interpolation are insufficient 
(middle). In this paper we explore zooming using a 
database of videos with an inference procedure that 
enforces spatio-temporal consistency of the resulting 
hallucinated video.
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Image processing

adopt local models, defined over image patches, and 
treat them independently.

Such a choice, however, fails to capture those events 
which span multiple patches, resulting in unrealistic face 
compositions. As a computational trade-off between 
treating these patches all independently and building 
a full statistical co-occurence model, we will impose 
compatibility constraints only between neighbouring 
patches. In particular, we will use a Markov Random 
Field (MRF) (Fig. 3, left) to model spatial interactions, 
allowing us to compose face template images without 
artifacts.

After the template image T is formed, we consider a 
deviation from the illumination conditions in which the 
prior model was built: An intensity offset I is added to 
T to produce the high resolution image H. Finally, we 
model the severe blur and downsampling operations for 
obtaining the low-resolution observation L by a linear, 
local-averaging operator followed by additive noise.

Exploiting Time

Just as neighbouring pixels in natural images tend to 
be highly correlated, so too are consecutive frames in 
video sequences. In our work, we exploit these temporal 
dependencies in further constraining the space of high 
resolution solutions. By extending the MRF framework 

into the time dimension (Fig. 3, right), we model 
couplings between consecutive frames. This results in a 
three-dimensional network of video patches, defined as 
data structures spanning multiple consecutive frames. 
For instance, as shown in Fig. 4 (bottom), we can 
choose a temporal support of 2 frames for the nodes in 
T, and make consecutive nodes overlap by one frame. 
This is equivalent to stating that the underlying video 
sequence is first-order Markov in time.

Our scheme gives the temporal dimension an 
unconventional role compared to traditional approaches 
to super resolution. In the literature, the relative motion 
between frames is estimated, then eliminated via warping 

or optical flow. These approaches are essentially two-
dimensional, treating time, in effect, as a nuisance 
parameter to be compensated for.

By contrast, we take advantage of the richer local 
signature that the combination of space and time 
provides.

In fact, the very small size of inputs (8x6 pixels) 
considered in this work would make the recovery of 
facial motions (e.g., opening and closing of the eyelids 
and mouth, the appearance of pupils and teeth, etc.) 
particularly difficult. Avoiding this motion estimation 
problem, our representation deals with complicated 
visual phenomena such as occlusions, appearance of 
new structures, and non-diffeomorphic deformations 
naturally, in terms of interacting chunks of high resolution 
video that constitute the nodes in T.

Results

Training Data and Testing

We generated our database of face template patches 
from a 1200 frame-long (40 sec) video of a speaking 
person, where the face covered an area of 128 x 96 

Figure 2: Model of blur and degradation

Figure 4: Implementation details of spatial (top) and 
temporal (bottom) overlap consistencies. The black 
pixels (top) indicate the locations where neighboring 
patches must have similar intensity. Whole image 
frame for overlapping video patches must agree as 
well for the video case (bottom)

Figure 3: Spatial (left) and spatio-temporal (right) 
coupling between neighboring template patches is 
shown in the Markov random field graphs for image 
(2-d, left) and video (3-d, right). 
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Imagie processing

pixels. The global motion in this video was removed 
using a translation-only motion model.

In our learning, we used individual low resolution pixels 
as patches, corresponding to 16 x 16 pixel-wide high 
resolution patches in both T and H. The neighbouring 
pixels come from the 2-pixel wide frame that surrounds 
each patch (Fig. 5). Finally, the feature vector stacks 
12-dimensional (composed of intensity, horizontal and 
vertical derivatives, and Laplacian, each computed over 
3 scales) vectors for each frame within the 
temporal support considered.

In order to generate the test data, we used 
a separate, 30 frame-long video sequence of 
the same person, whose translational motion 
is removed as above. After adding translational 
jitter noise (zero-mean Gaussian with σ = 1 high-
resolution pixel), we blurred and downsampled 
this test video at a resolution of 8 x 6 pixels 
(examples of such images can be seen in the 
top row of Fig. 6). We also added Gaussian 
noise (zero-mean, σ = 1) to its intensity values 
to account for uncertainties in sensing. Finally, 
since our data sets exhibited minimal change 
in the illumination conditions, we considered a 
constant illumination offset value for the entire 
image.

To better contrast the roles of spatial 
and temporal couplings, we ran multiple 
hallucination experiments in which we turned 
these couplings on and off and varied the 
range of temporal interaction from one to five 
frames.

Spatial Interaction

Fig. 6 displays a selected subset of frames 
corresponding to time instants t=2, 4, 14, and 
19, for three such settings 3. In the first row, 8 x 
6 input images are displayed whereas the last 
row shows the underlying 128 x 96 pixel-wide 
ground truth images.

The second row shows hallucination results 
with no interaction among patches Tp (i.e., 
each patch in each frame is hallucinated 

independently using the local Maximum 
Likelihood estimate computed in step 1 
of Alg. 1). We observe that the results 
look very patchy due to blocking artifacts 
and extraneous edges. For the third 
row, we ignore temporal interactions 
but enforce spatial interactions 
so that hallucination is performed 
independently for each frame, or 
frame-wise. We note that many of the 
blocking artifacts have disappeared, 
but unfortunately, hallucinations now 
contain some incorrect estimates of the 
underlying face motions (e.g., closed 
vs. open eyelid and mouth).

Spatio-Temporal Interaction

In the fourth row of Fig. 6, we included representative 
results for temporal hallucination, where we used three 
frames of temporal support. First, we note hallucinations 
become more correct when temporal interactions are 
allowed (compare the opening of eyelid and mouth with 

Figure 5: Each database entry contains an image patch, the 
neighboring pixels (for enforcing consistency), a feature vector 
(for matching to the low-resolution image), and its location (for 
supporting non-homogeneous spatial statistics). This structure is 
repeated for all frames within the temporal support considered.

Figure 6: The regularizing role of time for video 
hallucination.
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spatial-only hallucinations).
Inspected as static images, the results in Fig. 6 

already exhibit considerable improvements due to 
both spatial only and spatio-temporal modeling of the 
problem at hand.

Moreover, as can be verified from the video files 
(download at http://www.ri.cmu.edu/pubs/pub_4639.
html), our results as video sequences are even 
more compelling. Frame-to-frame transitions that are 
not directly observable in static images can have 
perceptually detrimental effects when seen as a time 
sequence. We observe that such flicker artifacts, amply 
present in frame-wise hallucinations, vanish to a large 
extent when temporal couplings are taken into account 
(i.e., when two or more frames of temporal support 
are used). These observations show that time plays a 
crucial role as a regulator in our inference.

In order to quantify the role of time, we 
provide an empirical analysis of the effect of 
various levels of temporal couplings. While 
varying the amount of temporal support in the 
nodes of T from a single frame (i.e., frame-wise 
hallucination, using spatial coupling only) to five 
frames, we compared the resulting hallucination 
videos to the ground truth video using the L2-
norm. Fig. 7 (left) shows a noticeable drop in the 
Mean-Squared-Error (MSE) metric as soon as 
temporal couplings are considered. In fact, the 
Bias-Variance decomposition of MSE reveals 
a more interesting phenomenon: Temporal 

models dramatically reduce the variance of our 
video hallucinator (Fig. 7, right), resulting in more 
stable videos. However, as temporal couplings 
become stronger, the bias also increases.

To further analyze the reduction in the amount 
of video flicker artifacts, we have measured 
frame-to-frame differences between consecutive 
time instants (i.e., temporal derivatives) in videos, 

and we have investigated how well these matched. 
Fig. 8 plots the L2-norm of the errors (relative to the 
ground truth video) in estimated temporal derivatives 
as a function of time. We notice that errors observed 
in frame-wise hallucinations are consistently higher 
compared to those of temporal hallucinations. In 
addition, the variability in error is lower when temporal 
couplings are used (bottom curve).

Limitations and Conclusion

Our training and testing sets have dealt with only one 
subject’s videos. Yet our experimental results already 
expose the benefits of using spatial and temporal 
interactions in hallucinating high-zoom videos. In the 
future, we will be enlarging our database to include 
more subjects.

This work used a spatially inhomogeneous prior for 
the template T. While such priors require input images 
to be registered, they also render database referencing 
and feature comparison steps more efficient. Although 
we challenged the registration assumption with 
translational jitter noise, space-invariant priors remain 
to be studied. Finally, since our data set did not include 
illumination variations, the additional power of our 
intensity offset model remains to be tested.

In summary, we formulated the task of hallucinating 
high-zoomed face videos as one of probabilistic 
inference, and dealt with the temporal nature of the 
problem directly.

Through experiments, we visually displayed and 
quantified the benefit of incorporating spatial and 
temporal couplings among units of estimated high-
resolution videos. [•]

More info at http://www.ri.cmu.edu/pubs/pub_
4639.html.

Figure 8: Incorporation of temporal couplings 
reduces the errors in the estimates of temporal 
derivatives. The two peaks observed around frames 8 
and 21 are due to blinking eyes, indicating that both 
algorithms are challenged. Error bars indicate one 
standard deviation from a sample set of size 36.

Figure 7: Bias-Variance Trade-Off: We ran 36 hallucination 
experiments with independent jitter and noise, and compared 
output videos against the ground truth. To summarize 
the measured bias and variance videos, we plot their 
value averaged spatially and temporally. Enforcing spatio-
temporal couplings reduces the Mean Squared Error (left), 
primarily by reducing the variance and enhancing the 
stability of hallucinated videos (right). However, stronger 
temporal couplings induce a larger bias (middle).


